Autor: PD Dr. Barten - Datum: 02.07.2019

Etablierung eines Expertenpanels zum Management sensibilisierter Patienten

Einrichtung eines Expertengremiums sinnvoll

Die Ergebnisse zweier großer Umfragen an Herzzentren weltweit zeigen, wie heterogen und komplex der Umgang mit sensibilisierten Patienten auf der Warteliste ist [18,38]. Es bestehen gerade in der Wahl des Immunoassays, den technischen Anforderungen sowie der klinischen Bedeutung und der Therapie der DSA große Unterschiede zwischen den Herzzentren.

In diesem Zusammenhang wäre es wichtig, ein Expertenpanel einzurichten, dass aus Spezialisten für die HLA-Genetik, für die Transplantationsimmunologie und die Transplantationsmedizin besteht, das für  jeden Patienten auf der Warteliste für eine HTx präoperativ das immunologische Risiko bestimmt und den postoperativen Verlauf beurteilt (Abbildung 1). Für eine Beurteilung ist die gezielte, individuelle Anwendung der neuesten invasiven und nicht invasiven diagnostischen Testverfahren entsprechend des klinischen Verlaufs des HTx-Empfängers notwendig. Diese individuelle Untersuchungsstrategie eröffnet dann wiederum die Möglichkeit für eine gezielte Therapie.

Interdisziplinäre Versorgung von HTx-Empfängern mit immunologischem Risiko.Abbildung 1: Interdisziplinäre Versorgung von HTx-Empfängern mit immunologischem Risiko.
Ab, Antikörper; cPRA, calculated panel of reactive antibodies; HLA, humanes Leukozytenantigen; HTx, Herztransplantation; IA, Immunadsorption; IVIG, intravenöses humanes Immunoglobulin; MFI, mittlere Fluoreszenzintensität; PA, Plasmapherese; RBRP, Entfernung (removal), Blockade, Reduktion, Prävention; SPA, solide Phasen-Assays; VMX, virtuelles Crossmatch

Bestimmung des immunologischen Risikos

Zunächst werden die Risikofaktoren für eine Sensibilisierung (Re-Transplantation, Schwangerschaft, vorausgegangene Operation mit menschlichem Gewebe, Bluttransfusionen und Herzunterstützungssysteme) berücksichtigt [22]. Besonders die wachsende Anzahl an Patienten mit einem Herzunterstützungssystem ist in Ländern mit Organmangel wie Deutschland problematisch, weil diese Patienten durch Infektionen, Bluttransfusionen und/oder durch eine durch Zytokinfreisetzung initiierte Immunantwort sensibilisiert werden können [39-43]. Abhängig vom immunologischen Risiko werden für jeden Patienten auch abhängig die diagnostischen bzw. die therapeutischen Konsequenzen festlegt. 

Bezüglich der Verwendung von Immunoassays werden sowohl von der ISHLT als auch von der American Heart Association (AHA) die SPAs, beruhend auf der spezifischen Antigen-Bead Technologie (Luminex), wegen der hohen Spezifität und Sensitivität als Methode der Wahl empfohlen [18,44]. Dabei sollte immer die Bindungskapazität der Antikörper (Mittlere Fluoreszenz Intensität, MFI) als Maß der Antikörpersättigung bestimmt werden. Dabei gelten MFI-Werte zwischen 1000 bis 5000 als positives Resultat [44] und MFI-Werte über 8000 als klinisch relevant oder sogar als toxisch [36]

Die Ergebnisse einer im Jahr 2018 veröffentlichten Studie zeigten, wie prognostisch wertvoll die Bestimmung des kalkulierten Panels der reaktiven Antikörper (cPRA) sein kann. So hatten Patienten mit einem cPRA >20 % ein prognostisch verringertes Überleben auf der Warteliste und nach HTx [46]. Bei Patienten mit mittlerem bis hohem immunologischen Risiko kann das Risiko durch Verwendung der C1q-Komplementtests und des IgG3-Tests genauer spezifiziert werden. 

  • Der C1q-Test kann helfen, zytotoxische Antikörper zu identifizieren, den Spenderpool zu erweitern und damit die Sterblichkeit auf der Warteliste zu reduzieren [47,48]
  • Dagegen bestimmt der IgG3-Test spezifisch die gefährliche Immunglobulinklasse IgG3, wie bei Nieren- bzw. Lebertransplantierten erfolgreich als Prognosetest beschrieben [49,50].  

Prä-, peri- und postoperatives Management

Wurde bei einem Patienten das immunologische Risiko bestimmt, dann legt das Expertenpanel die individuelle Strategie für die prä-, peri- und postoperative Diagnostik und Therapie fest. 

Präoperatives Management: Derzeit gibt es keine Studien über einheitliche Desensibilisierungsstrategien, um festzulegen, welcher Risikopatient zu welchem Zeitpunkt vor HTx und mit welcher Therapie behandelt werden soll [51]. So bleibt die Desensibilisierungstherapie auf wenige Patienten mit sehr hohem immunologischen Risiko (u. a. cPRA >50%–80%, MFI >8000 SPA und / oder C1q positiv) beschränkt. Im Wesentlichen folgt die Desensibilisierungsstrategie den RBRP-Regeln – also Entfernung (removal), Blockade, Reduktion bzw. Inhibition und Prävention der Antikörper – um effektiv die wichtigen Komponenten des Immunsystems wie zirkulierende anti-HLA Antikörper, B-Lymphozyten, Plasmazellen und/oder Komplementaktivierung zu beeinflussen [52]. Detaillierte Informationen zur Desensibilisierungstherapie finden Sie im Abschnitt Desensibilisierungstherapie.

Perioperatives Management: In der perioperativen Phase empfiehlt sich die in Zusammenarbeit mit einem Experten für HLA-Genetik und die Verwendung des virtuellen Crossmatch (VXM) bei den Patienten mit immunologischen Risiko [52], um nach Übereinstimmung mit dem HLA-Experten die Transplantation zu starten (Abbildung 1). Zusätzlich sollte ein prospektives T- und B-Lymphozyten Crossmatch erfolgen, auch bei Patienten mit negativem VXM [52]. Viele Zentren führen bei Patienten mit akzeptablem VXM und negativem T- und B-Lymphozyten Crossmatch entweder eine Plasmapherese oder Immunadsorption als initiale Therapie der Desensibilisierung vor der HTx durch [18]. Eine retrospektive Analyse aus Frankreich berichtet über eine erfolgreiche Anzahl an HTx bei sensibilisierten Patienten trotz eines positiven Crossmatches. In Abhängigkeit des MFI-Wertes zum Zeitpunkt der HTx wurden die Patienten entweder nur mit Immunglobulinen oder mit der Kombination von Immunglobulinen und Plasmapherese behandelt [53]

Postoperatives Management: Postoperativ sollten sensibilisierte Patienten initial nach HTx mit einer Induktionstherapie (z. B. Antithymozytenglobulin) und mit einem immunsuppressiven Regime mit einem Calcineurin-Inhibitor mit erhöhter Blutkonzentration behandelt werden [54]. Die weitere Therapie richtet sich nach dem klinischen Verlauf und dem Auftreten von DSA, die zu bestimmten Zeitpunkten entsprechend der ISHLT-Richtlinie gemessen werden sollten [18]. Des Weiteren sollte postoperativ bei den regelmäßigen Ambulanzvisiten eine körperliche Untersuchung und echokardiographische Überwachung der Herzfunktion sowie eine regelmäßige Herzbiopsie der sensibilisierten Patienten erfolgen (Abbildung 1). Zudem kann eine Messung mit einem Rechtsherzkatheter diagnostisch wertvoll sein, um frühzeitig Dysfunktionen des Herzens als Zeichen einer AMR zu erkennen oder um eine prognostische Beurteilung von DSA zu erleichtern [52]. Neuere Diagnostik, wie die Erstellung eines Genexpressions-Profils, ist mitunter nützlich, um eine Abstoßung zellulär oder humoral zu entdecken, da beide Abstoßungsformen oft zusammen ablaufen [55].  

Autor: Privatdozent Dr. med. Markus J. Barten

Privatdozent Dr. med. Markus J. Barten
Universitäres Herz- und Gefäßzentrum Hamburg
Klinik und Poliklinik für Herz- und Gefäßchirurgie

Literatur

  1. Lund LH, Khush KK, Cherikh WS et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-Fourth Adult Heart Transplantation Report – 2017; Focus Theme: Allograft ischemic time. J Heart Lung Transplant 2017; 36: 1037-1046.
  2. Hodges AM, Lyster H, McDermott A, et al. Late antibody-mediated rejection after heart transplantation following the development of de novo donor-specific human leukocyte antigen antibody. Transplantation 2012;93:650–6.
  3. Clerkin KJ, Restaino SW, Zorn E, et al. The effect of timing and graft dysfunction on survival and cardiac allograft vasculopathy in antibody-mediated rejection. J Heart Lung Transplant 2016; 35:1059–66. 
  4. Shahzad K, Aziz QA, Leva JP, et al. New-onset graft dysfunction after heart transplantation–incidence and mechanism-related outcomes. J Heart Lung Transplant 2011;30:194–203.
  5. Kfoury AG, Hammond ME, Snow GL, et al. Cardiovascular mortality among heart transplant recipients with asymptomatic antibody-mediated or stable mixed cellular and antibody-mediated rejection. J Heart Lung Transplant 2009;28:781–4.
  6. Loupy A, Toguet C, Rouvier P, et al. Late failing heart allografts: pathology of cardiac allograft vasculopathy and association with antibody-mediated rejection. Am J Transplant 2016;16:111–20.
  7. Frank R, Molina MR, Goldberg LR, et al. Circulating donor-specific anti-human leukocyte antigen antibodies and complement C4d deposition are associated with the development of cardiac allograft vasculopathy. Am J Clin Pathol 2014;142:809–15.
  8. Tran A, Fixler D, Huang R, et al. Donor-specific HLA alloantibodies: impact on cardiac allograft vasculopathy, rejection, and survival after pediatric heart transplantation. J Heart Lung Transplant 2016;35:87–91.
  9. Bray RA, Harris SB, Josephson CD, et al. Unappreciated risk factors for transplant patients: HLA antibodies in blood components. Hum Immunol. 2004;65:240–244. 
  10. Lietz K, John R, Kocher A, et al. Increased prevalence of autoimmune phenomena and greater risk for alloreactivity in female heart transplant recipients. Circulation.2001;104(suppl 1):I-177–I-83.
  11. Mehra MR, Uber PA, Uber WE, et al. Allosensitization in heart transplantation: implications and management strategies. Curr Opin Cardiol. 2003;18:153–158.
  12. Rebibou JM, Chabod J, Alcalay D, et al. Flow cytometric evaluation of pregnancy-induced anti-HLA immunization and blood transfusioninduced reactivation. Transplantation. 2002;74:537–540.
  13. Welters MJ, Oei FB, Witvliet MD, et al. A broad and strong humoral immune response 02012;58:554–561. 
  14. Tambur AR, Campbell P, Claas FH, et al. Sensitization in Transplantation: Assessment of Risk (STAR) 2017 Working Group Meeting Report. Am J Transplant 2018; 18:1604-1614.
  15. McCaughan JA, Tinckam KJ. Donor specific HLA antibodies & allograft injury: mechanisms, methods of detection, manifestations and management. Transpl Int 2018; 31:1059-1070.
  16. Tait BD, Süsal C, Gebel HM, et al. Consensus guidelines on the testing and clinical management issues associated with HLA and non-HLA antibodies in transplantation. Transplantation 2013;95:19-47.
  17. Reed EF, Rao P, Zhang Z, et al. Comprehensive assessment and standardization of solid phase multiplex-bead arrays for the detection of antibodies to HLA-drilling down on key sources of variation. Am J Transplant 2013;13:3050–1.
  18. Kobashigawa J, Colvin M, Potena L, et al. The management of antibodies in heart transplantation: An ISHLT consensus document. J Heart Lung Transplant 2018; S1053-2498(18)31292-0.
  19. Reinsmoen NL, Patel J, Mirocha J et al. Optimizing transplantation of sensitized heart candidates using 4 antibody detection assays to prioritize the assignment of unacceptable antigens. J Heart Lung Transplant 2016;35:165–72.
  20. Svobodova E, Gazdic T, Kubanek M, et al. Novel insights into pretransplant allosensitization in heart transplant recipients in the contemporary era of immunosuppression and rejection surveillance. Transpl Int 2016;29:63–72.
  21. Chen CK, Manlhiot C, Conway J, et al. Development and impact of de novo anti-HLA antibodies in pediatric heart transplant recipients. Am J Transplant 2015;15:2215–22.
  22. Topilsky Y, Gandhi MJ, Hasin T, et al. Donor-specific antibodies to class II antigens are associated with accelerated cardiac allograft vasculopathy: a three-dimensional volumetric intravascular ultrasound study. Transplantation 2013;95:389–96.
  23. Stehlik J, Islam N, Hurst D, et al. Utility of virtual crossmatch in sensitized patients awaiting heart transplantation. J Heart Lung Transplant. 2009 Nov;28(11):1129-34. 
  24. Zeevi A, Lunz J. HLA antibody profiling in thoracic transplantation undergoing desensitization therapy. Curr Opin Organ Transplant 2012;17:416–22.
  25. Smith JD, Banner NR, Hamour IM, et al. De novo donor HLA-specific antibodies after heart transplantation are an independent predictor of poor patient survival. Am J Transplant 2011;11:312–9.
  26. Cooper JE, Gralla J, Adebiyi O, et al. Donor specific antibodies before and after kidney transplant: the University of Colorado Experience. Clin Transpl 2013;407–12.
  27. Irving CA, Carter V, Gennery AR, et al. Effect of persistent versus transient donor-specific HLA antibodies on graft outcomes in pediatric cardiac transplantation. J Heart Lung Transplant 2015;34:1310–7.
  28. Kaczmarek I, Deutsch MA, Kauke T, et al. Donor-specific HLA alloantibodies: long-term impact on cardiac allograft vasculopathy and mortality after heart transplant. Exp Clin Transplant 2008;3:229–35.
  29. Clerkin KJ, Farr MA, Restaino SW, et al. Donor-specific anti-HLA antibodies with antibody-mediated rejection and long-term outcomes following heart transplantation. J Heart Lung Transplant 2017;36:540–5.
  30. Ho EK, Vlad G, Vasilescu ER, et al. Pre- and posttransplantation allosensitization in heart allograft recipients: Major impact of de novo alloantibody production on allograft survival. Hum Immunol 2011;72:5–10.
  31. Coutance G, Ouldamar S, Rouvier P, et al. Late antibody-mediated rejection after heart transplantation: Mortality, graft function, and fulminant cardiac allograft vasculopathy. J Heart Lung Transplant 2015; 34:1050–7.
  32. Nath DS, Angaswamy N, Basha HI, et al. Donor specific antibodies to HLA are associated with and precede antibodies to major histocompatibility complex class I-related chain A in antibody-mediated rejection and cardiac allograft vasculopathy after human cardiac transplantation. Hum Immunol 2010;71:1191–6.
  33. Tible M, Loupy A, Vernerey D, et al. Pathologic classification of antibody-mediated rejection correlates with donor-specific antibodies and endothelial cell activation. J Heart Lung Transplant 2013;32:769–76.
  34. Ware Al, Malmberg E, Delgado JC, et al. The use of circulating donor specific antibody to predict biopsy diagnosis of antibody-mediated rejection and to provide prognostic value after heart transplantation in children. J Heart Lung Transplant 2016;35:179–85.
  35. Uber WE, Self SE, Van Bakel AB, Pereira NL. Acute antibody-mediated rejection following heart transplantation. Am J Transplant 2007;7:2064–74.
  36. Wu GW, Kobashigawa JA, Fishbein MC, et al. Asymptomatic antibody-mediated rejection after heart transplantation predicts poor outcomes. J Heart Lung Transplant 2009;28:417–22.
  37. Kobashigawa J, Crespo-Leiro M, Ensminger SM et al. Report from a consensus conference on antibody-mediated rejection in heart transplantation. J Heart Lung Transplant. 2011 Mar;30(3):252-69
  38. Barten MJ, Schulz U, Beiras-Fernandez A, et al. The clinical impact of donor-specific antibodies in heart transplantation. Transplant Reviews 2018; 32:207-217.
  39. Drakos SG, Kfoury AG, Kotter JR, et al. Prior human leukocyte antigen-allosensitiza- tion and left ventricular assist device type affect degree of post-implanta- tion human leukocyte antigen-allosensitization. J Heart Lung Transplant. 2009;28:838–842. 
  40. Arnaoutakis GJ, George TJ, Kilic A, et al. Effect of sensitization in US heart transplant recipients bridged with a ventricular assist device: update in a modern cohort. J Thorac Cardiovasc Surg. 2011;142:1236–1245.
  41. Shankar N, Daly R, Geske J, et al. LVAD implant as a bridge to heart transplantation is associated with allosensitization as measured by single antigen bead assay. Transplantation. 2013;96:324–330.
  42. See SB, Clerkin KJ, Kennel PJ, et al. Ventricular assist device elicits serum natural IgG that correlates with the development of primary graft dysfunction following heart transplantation. J Heart Lung Transplant. 2017;36:862–870. 
  43. Pajaro OE, George JF. On solid-phase antibody assays. J Heart Lung Transplant 2010;29:1207–9.
  44. Colvin MM, Cook JL, Chang PP, et al. Sensitization in Heart Transplantation: Emerging Knowledge: A Scientific Statement from the American Heart Association. Circulation. 2019 Mar 19;139(12):e553-e578
  45. Reinsmoen NL, Lai CH, Mirocha J, et al. Increased negative impact of donor HLAspecific together with non-HLA-specific antibodies on graft outcome. Transplantation2014;97:595–601.
  46. Kransdorf EP, Kittleson MM, Patel JK, et al. Calculated panel-reactive antibody predicts outcomes on the heart transplant waiting list. J Heart Lung Transplant. 2017;36:787–796.
  47. Chang D, Kobashigawa J. The use of the calculated panel-reactive antibody and virtual crossmatch in heart transplantation. Curr Opin Organ Transplant. 2012;17:423–426.
  48. Freitas MC, Rebellato LM, Ozawa M, et al. The role of immunoglobulin-G subclasses and C1q in de novo HLA-DQ donor-specific antibody kidney transplantation outcomes. Transplantation. 2013;95:1113–1119.
  49. O’Leary JG, Kaneku H, Banuelos N, et al. Impact of IgG3 subclass and C1q-fixing donor-specific HLA alloanti- bodies on rejection and survival in liver transplantation. Am J Transplant. 2015;15:1003–1013.
  50. Chih S, Patel J. Desensitization strategies in adult heart transplantation: will persistence pay off? J Heart Lung Transplant. 2016;35:962–972.
  51. Loupy A, Lefaucheur C. Antibody-mediated rejection of solid-organ transplantation. N Engl J Med 2018;379:1150-60.
  52. Barten MJ, Schulz U, Beiras-Fernandez A, et al. A Proposal for Early Dosing Regimens in Heart Transplant Patients Receiving Thymoglobulin and Calcineurin Inhibition. Transplant Direct. 2016 May 20;2(6):e81.
  53. Barten MJ, Zuckermann A. The meaning of donor-specific antibodies after heart transplant. Curr Opin Organ Transplant 2019; 24:252–258. 
  54. Coutance G, d’Orio V, Belin L, et al. Favourable outcome of an exclusively post-transplant prophylactic strategy after heart transplantation in recipients with high immunological risk. Transplantation 2018;
  55. Sellarés J, de Freitas DG, Mengel M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant 2012;12:388–99.
  56. Chin C, Chen G, Sequeria F, Berry G, et al. Clinical usefulness of a novel C1q assay to detect immunoglobulin G antibodies capable of fixing complement in sensitized pediatric heart transplant patients. J Heart Lung Transplant. 2011;30:158– 163. 
  57. Agbor-Enoh S, Jackson AM, Tunc I, et al. Late manifestation of alloantibody associated injury and clinical pulmonary antibody-mediated rejection: evidence from cell-free DNA analysis. J Heart Lung Transplant 2018; 37: 925-32.
  58. Duong Van Huyen JP, Tible M, Gay A, et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur Heart J 2014; 35: 3194-202.
  59. Halloran PF, Potena L, Van Huyen JD, et al. Building a tissue-based molecular diagnostic system in heart transplant rejection: The heart Molecular Microscope Diagnostic (MMDx) System. J Heart Lung Transplant. 2017;36:1192-1200.
  60. Böhmig GA  et al. Am J Transplant. 2007;7:117–21
  61. Montgomery RA et al. N Engl J Med. 2011;365:318–26
  62. Morath C et al. Transplantation. 2010;90:645–53
  63. Niederhaus S et al. Trans Proc. 2011;92:12–17
  64. Lai C et al. Transplantation. 2011;92:48–53
  65. Vo AA, Petrozzino J, Yeung K, et al. Efficacy, outcomes, and cost effectiveness of desensitization using IVIG and rituximab. Transplantation. 2013;95:852–858.
  66. Rummler S, Barz D. Plasma exchange and immunoadsorption of patients with thoracic organ transplantation. Transfus Med Hemother 2012;39:234–40.
  67. Kittleson MM, Kobashigawa J. Antibody-mediated rejection. Curr Opin Organ Transplant 2012;17:551–7.
  68. Jordan SC, Vo AA, Toyoda M, et al. Post-transplant therapy with highdose intravenous gammaglobulin: applications to treatment of antibodymediated rejection. Pediatr Transplant. 2005;9:155–161.
  69. Singh N, Pirsch J, Samaniego M. Antibody-mediated rejection: treatment alternatives and outcomes. Transplant Rev (Orlando). 2009;23:34–46.Jordan SC et al. Expert Rev Clin Immunol. 2011;7:341–348. 
  70. Ravichandran AK, Schilling JD, Novak E, Pfeifer J, Ewald GA, Joseph SM. Rituximab is associated with improved survival in cardiac allograft patients with antibodymediated rejection: a single-center review. Clin Transplant 2013;27:961–7.
  71. Aggarwal A, Pyle J, Hamilton J, Bhat G. Low-dose rituximab therapy for antibodymediated rejection in a highly sensitized heart-transplant recipient. Tex Heart Inst J 2012;39:901–5.
  72. Thrush PT, Pahl E, Naftel DC, et al. A multi-institutional evaluation of antibody mediated rejection utilizing the Pediatric Heart Transplant Study database: incidence, therapies and outcomes. J Heart Lung Transplant 2016;35:1497–504.
  73. Morrow WR, Frazier EA, Mahle WT, et al. Rapid reduction in donor-specific anti-human leukocyte antigen antibodies and reversal of antibody-mediated rejection with bortezomib in pediatric heart transplant patients. Transplantation 2012;93:319–24.
  74. Zinn MD, L'Ecuyer TJ, Fagoaga OR, Aggarwal S. Bortezomib use in a pediatric cardiac transplant center. Pediatr Transplant 2014;18:469–76.
  75. Enderby CY, Habib P, Patel PC, Yip DS, OrumS, Hosenpud JD. Belatacept maintenance in a heart transplant recipient. Transplantation 2014;98:e74.
  76. Ius F, Haverich A, Warnecke G. Cardiac transplantation across preformed HLA-antibody barriers.Transplantation. 2018 Oct 26. doi: 10.1097/TP.0000000000002504. 
  77. Jordan SC, Toyoda M, Kahwaji J, Vo AA. Clinical aspects of intravenous immunoglobulin use in solid organ transplant recipients. Am J Transplant 2011;11:196–202.
  78. Kittleson MM, Kobashigawa J. Antibody-mediated rejection. Curr Opin Organ Transplant 2012;17:551–7.
  79. Barten MJ, Dieterien MT. Extraocorporeal photopheresis after heart transplantation. Immunotherapy 2014;6:927–44.

Disclosures

Honorare für Vorträge von Therakos und Biotest.

Kommentare (0)

Keine Kommentare gefunden!

Neuen Kommentar schreiben